MANNVILLE COALBED METHANE
PLAY A TECHNOLOGY DRIVEN RESOURCE
IN ITS INFANCY
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Interpretation of Mannville
Gas Content Trends

Depth to coal targets ranges from <900 m to 1600 m

Permeabilities range from 3 to 4 md in the shallower targets to <1 md in
the deeper targets

Generally 2 — 5 seams (cum. thickness to 20m)

Gas contents of the target seams ranges from less than 7 cc/g to more
than 10 cc/g, depending on depth and geographic location (300 — 500
scf/ton)

Gas-in-place ranges from less than 2 to >10 bcf/sec depending on gas
content and coal seam thickness

High salinity water needing disposal strategy
Wet and dry coal regions

Recovery of economic volumes of gas depends on successfully drilling
and completing horizontal wells in the targeted coal seams as there is no
evidence to date that vertical Mannville CBM wells are economic

There is significant potential in the Mannville (70% of the estimated 500 tcf
are in these coals)
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Measured and corrected gas contents (scf/ton) of coal core
samples.
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DEEP CBM ACTIVITY AND THE
TECHNOLOGIES BEING
EMPLOYED TO EXPLOIT THEM



GLOBAL COAL DISTRIBUTION
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TYPES OF DEEP COALBED
METHANE PLAYS

* DRY COALS

* WET COALS

* PRESSURED COALS

* NON-PRESSURED COALS



Depth and permeability: the
problem

* Majority of successful CBM plays in the world are
at depths < 1000m (3300 ft)

* An exception is White River Dome in Piceance
basin, where depths are ~6000-7000 ft. This must
be an area of perm enhancement.

* Most successful CBM plays have permeabilities 3-
30 md, and these occur at depths < 1000 m



Exploiting Tight Coals <1 md

Most CBM plays have permeability >3 md; exception is dry
coal south of fairway (0.1-3 md)

Hard to make an economic play for 0.1-1 md coals, without
new stimulation technology

These tight coals behave similar to tight gas sands (<20 pd):

— water and gas rates decline rapidly, over several months
(flush production from cleats).....not economic

Explanation:

— desorption too slow to refill cleats because cleats are too far
apart in low-perm coals <1 md

— eg, cleat spacing is ~4x worse in HVB coals than in MV
coals

— this slows down desorption by 16x (a diffusive process)
— And perm is worse by 4x ....double whammy!



Cleats per inch versus coal rank

Hardgrove Grindability Index
(Bell and Jones, 1989)

Fracture Frequency (cleats/inch)
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The problem with HVB and Anthracites
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Gas rates in tight coals
can be very poor
(eg, HVB)



PERMEABILITY ENHANCEMENTS

* Cleating occurs during coalification

* Tectonic Fracturing

— Numerous stages
e Relaxed Stress conditions
e Stimulation Treatments

* Under Balanced Multi Lateral Multi Seam
Drilling
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Plains Coal
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Plains Coal

Mechanical Butt Cleat ~— facecea
— Butt cleat

— Multi-Lateral Wellbore



* “permeability enhancements may be
the most significant benefit of Under
Balanced Multi Lateral Multi Seam
Drilling to enhance coalbed methane
production. “



Skin Factor Impact on Production Rate

Production Rate

“Ideal”
Rate




MECHANISMS OF FORMATION
DAMAGE IN COAL

1) Chemical Absorption

3) Invasion of Fines



Formation Damage in Under Pressured Zones due to Over
Pressured Drilling Applications and Drill Mud Additives Cause
Reduction and Damage to Coal Bed Methane Gas Recovery

* “...it appears that even water containing low
concentrations of friction reducing polymers can cause
significant damage to coal permeability”

* Puri, King & Palmer, 1991

* “Due to the possibility of extensive damage to coal
permeability, it is recommended that all possible effort be
made to avoid contacting the coal seam with fluids
containing polymers, surfactants, biocides, friction reducers,
or any other liquid chemicals.”

* Puri, King & Palmer, 1991

SOURCE: SPE 21813



Routine Analysis of McRae Coal Seam Samples used in the Formation Damage Studies
ROUTINE CORE ANALYSIS

Sample | Air Permeability Porosity
No. (mD) (fraction)
SP 1 0.24 0.018
SP2 6.62 0.028
SP3 14,33 \ 0.023
SP4 14.79 0.028
SP5 47.19 eSO
SP 6 110.96 0.036 |
[sE 13.76 0.036
SP 8 2071 : 0.038
SP 9 101.66 : 0.097
SP 10 5.31 ~ 0.021 H

Summary of Coalbed Methane Overbalanced Drilling Fluid Formation Damage Test Results

Sample | Fluid Tested | Routine | Poro | Overbalanced Fluid | Initial | Final Reduction
No. Dry Air | sity Pressure Loss | Brine | Brine by Mud
Perm | Fract (kPA) in Perm | Perm Contact
(mD) ion 240 | (mD) | (mD) (%)
min
= (cc)
9 Pure P.A.C. 20.71 | 0.038 5000 37352 Y -77.7
7 Xanthan Gun + 13.76 | 0.036 5000 39 1.38 | 0332 -76.0
|G P.A.C. :
3 Xanthan Gum, 14.22 | 0.023 5000 4.6 086 | 0112 -87.0
pH=12 el
4 Xanthan Gum, 14.78 | 0.028 5000 1.8 1.42 0.295 -79.2
pH=7 :
5 Base Foaming 47.19 | 0.050 1000 127.8 | 117 0.269 -77.0
Solution
7A | Xanthan Gum 29 0.025 5000 206 | 5.14 1.39 -72.9
3 Field Mud
5A Xanthan Gum + 35 0.027 3000 53 894 | 1.23 -86.3
Fiber Bridging
| Agent
3A | Cationic Shale 215 0.020 5000 156.2 | 2.22 0.556 -74.9
| Inhibitor/HEC



Pl- P2= AP

PZ
Fluid leakoff
Drilling fines

migration \
Apacting o8 - Drilling Fluid Flow ——
M
— L
X X T AP

\

Cuttings :
cake Fines squeezed

into cleat under AP



Formation Damage
Building a Filter Cake

The Result is Porous
Areas of Formations
become Restricted or
“Clogged” and are Unable
to Flow or Produce to
Their Full Potential.
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Three Contributions to Skin
Factor in Horizontal Wells

* Perm damage due to drilling mud (OB
drilling)

* Perm loss due to coal fines plugging of
cleats (OB drilling

* Perm loss due to hoop stress
concentration (OB of UB drilling)

* Perm loss due to failure around well, and
fines plugging



Horizontal/Multilateral Well Planning



Flow chart

well configuration

CBM reservoir
model

l

Study on well
configurations

Well shapes

» Total horizontal length

Study on
reservoir
characteristics

Spacing between laterals

Permeability

» [imMe constant

l

Study on
thickness

(zas content



Investigated Parameters

—_—_—

1. Total Horizontal Length (THL)
2. Spacing Between Laterals (SBL)

Vertical depth:
constant

Spacing between
laterals (SBL)

spacing between
laterals (SBL)

A lateral well



Single-lateral
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Dual-lateral
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Tri-lateral

i SEL = 170 1

_— 04
SEL=3401

035 } S SEL =1,360 ft | SBL = 680 ft

=hf=ZBEL = 1,260 ft

03 } SBL = 340 ft

s | SBL = 170 ft

Gas Recowerny, %
o
[ o5 ]

o
n

o1 p

Q.05

a 1000 2000 2000 4000 5000 &0an To0o B0CD
Hiarizantal Length, ft



Quad-lateral
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Best Producers Comparison
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Quad-lateral Economics

Net Present Value (NPV)

$200,000.00

$100,000.00
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After considering economics:

Quadlateral, with SBL = 680 ft, THL = 3,100 ft.
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Predicting Failure while Drilling:
Horizontal Well Stability



GeolMecnarnics for CBM Drilling,
Cormnpleiion and Produciion

09/04/07



Coal Bed Methane Symposium
Presentation Outline

Introduction to Geomechanics
Coal Properties and Geomechanics

Designing a Drilling Program for Coal Bed Methane
— ' : e

—— Faco cheal —— Shear frachre
——Buttcleat —— Bodding




Introcluy



Foundation of the Geomechanical
Model

SHmax

Sv

\_|
T
........ \ i
Shmin

The Principal Stress Tensor

Description of a geomechanical
model for a reservoir involves

deta|led knowledge of
* In situ stress orientations

* In situ stress magnitudes

* Pore pressure

* Rock Mechanical Properties
Other considerations: Mud

Chemistry, Weak Bedding Planes,
Fractures, Thermal Effects

S — Vertical Stress
— Maximum Horizontal Stress
— Minimum Horizontal Stress

— Unconfined Compressive Rock Strength (UCS)

S
S
P — Pore Pressure
C
R

p
0
ock Properties — Cohesion, Friction, Elastic Moduli




Building a Geomechanical Model

GEOMECHANICAL DATA SOURCES

Integrated density

Vertical Stress O——»| S, <= . C e
Density from sonic/seismic

Measurements (RFT, DST, PWD)
Pore Pressure O———»| P, <= Log-based (sonic, resistivity)
Seismic (ITT, velocity cubes)

XLOT, LOT, minifrac,

Least Principal Stress O———»| S, . <=
ey lost circulation, ballooning

Analysis of wellbore failure
O———»|  Crossed dipole sonic (orientation)
“Active” geological structures

SHmax Magnitude
Stmax Orientation

Rock Strength O———» Core tests, logs, cuttings, analysis
of wellbore failure




Wellbore Stability Diagrams
Lower Hemisphere Stereo Plot

Horizontal well drilled NORTH
to the north —— Vertical Well

Lower hemisphere projection

90 degree >
deviation

60 degree ™,

defviation
30 degree
deviation

WEST EAST

60 degree deviated
well drilled to the
south east

SOUTH
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World Stress Map — North America
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Observations of Borehole Failure to
Constrain the Stress State

The mechanical interaction of the borehole in a given litholc
with the current stress field governs borehole failure — henc
borehole stability.

Breakout width/failure severltv

* Stress magnitudes

* Rock strength
Breakout or tensile

crack azimuth:

Tensile !

cracks * Stress orientatior

SHmax Breakouts



Example of Wellbore Failure

This well is failing simultaneously in compression and in tension
N

Breakout

Important: This failure is often not
catastrophic and does not adversely
affect drilling.




Cozal Properiles



Comments on the unique properties and
complications of coal

Coals are commonly (but not always) extensively fractured.

Coals are often inter-bedded within shales or sands which could
be weaker or stronger and the shales can be strongly anisotropic.

Coals can have anomalous stresses compared to surrounding
rocks.

This can lead to difficult drilling conditions and difficulties
designing fracture completions.



Face cleats

Coal fractures

Shear fracture

4| Butt cleats

Face cleats

* Drilling and completions programs need to take the
fractures into account

After: Anderson et al., 2003



Blocky Cavings (‘Rubble’)
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Failure: Due to Stress and Time-Dependent
Mud Penetration into Fractures (e.g.,
Fractured Rocks, Around Salt, Along Faults)

Mud Type: OBM worse than WBM

Solutions: Adjust Mud Weight, Change Mud T ST weee
Type, Prevent Mud Penetration



Platy/Tabular Cavings

TEMDEMCY FOR FAILURE

Failure: Due to Formation Strength
Anisotropy (weakly bedded or fissile)

Mud Type: OBM or WBM . |

T T T
13 13.2 13.4 13.6 13.8

Solutions: Raise Mud Weight, Reauired Prm aRA

Increase Angle-of-Attack to bedding



Published Coal Strength Information
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Figure 1. Band of UCS from core tests versus coal rank,
and HGI measurements (adapted from refs. 7, 8). Note:
carbon content = 100 — volatile matter (daf)



Examples of Coal Strength

Histograms
Coal UCS ranges from 1700 to more than 3100 psi

100% 50

You can develop log-based correlations to calculate strength based
on core test results.

Coal UCS is similar in all three wells but one well has no coals
weaker than 2250psi.



Cum. %

Example of Strength vs. Lithology

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0% =

rrrrrrrrr

rrrrr

rrrrrrr

—@— Coal - from 2100m to 2310m
—a@— Shale - from 2100m to 2310m
—a— Sand - from 2100m to 2310m

0 5000

10000 15000
UCS (MPa)

20000

Coal is the weakest
lithology (not always the
case)

Sands are the strongest
lithology

Shales have intermediate
strengths
(UCS ~3000-7000 psi)

Shales are differentiated
from sands based on a GR
cutoff, after filtering out
coals



Exampilessatsoal strength-propenties
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From:
GRI Report

Traditional triaxial tests can over estimate the strength of coals if highly fractured
because cleats fail prematurely.



Drilling

While coal can be quite

strong, weak fractures can

fail prematurely producing

rubble.

Open fractures can contribute

to losses with mud weights below the
fracture gradient

These, and stress differences

relative to surrounding rock, can result in
narrow mud windows.

BUT - coal has very low density, so hole

cleaning of fines is easier with low mud
densities than for other rocks

butt face coal matrix

cleats cleats maintaining
’ micropores
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Deslgning =2 Drilling Progrearn for

Cozl Bacd Vletnzne
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overpull

Drilling Summary
SIDETRACK 1
*»
»

Geomechanical Events
milling on junk

-1 Left cone in hole; |------
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Drag on RIH

PILOT HOLE

LOT @390m
|EMW=14.2ppg| T
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1400
1600
1800 A
2000 -
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Example Drilling Experiences
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Example Pore Pressure and

Overburden
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TVD [meters, RKE]

Example Rock Properties

GR [0 150] Bulk Density [1.95 2.95] W shale [0 1] Ot Compr. [240 40] RT[0.1 1000 UCS [0 20000
[gapi] [afcm3] [ief] [micrasif] [ahmm] [psi]
CALITA 18] Foissan ratio [0 0.49]
[inches] [unitless]
Sonic para. [-0.15 0.44] Friction coeff. [0 1.2]
[wiv] [unitless]
Biot[0.5 1]

[unitless]

" Rock mechanical
- properties are derived

200

from empirical
correlations

400

Iy

500

urt ]
——

800

Tl

1000

1200

1400




Constraining the Magnitude of Shmin and

SHmax

Stress and Strength Constrained by Wellbore Failure
(strength contours in PSI)

SHmax, FPG

e Shmin=22.053 _
|

i

Sv =209491PPG

Azimuth of SHmax = 100 degree
Pore Pressure = 85394 PPG
Eiot Cosfficient = 1

Foissons' Ratio = 043635
Wellbore Azimuth = 3 585 degree

Wellbore Deviation = 14931 degree

Brealout Width = 50 degree

Diff. Mud Pressure = 1.01 FFG
Sliding Friction =06

Failure Criterion = Lade modified
Internal Friction = 0.7038

True Vertical Depth = 2985 fest

i 1 i
10 1% 20 25 a0 35
Shmin, FFG

Breakouts in coal
@ 910m indicate:

40 45

36 ppg < SHmax < 47.3 ppg

22 ppg < Shmin < 46

pPY

*Modified Lade Failure Criterion.

"Stress regime is reverse
faulting.

"5500-11000psi rock strength
range in this interval.




TVD [meters, RKE]

500

1000

1500

Example Stress Profile

Stress [ppg]

10 20
T T

30 40 50
T

.......

Effective Stress Ratios

(SHmin—Pp)f(SwF"pj
I=Hmax-Fplisw-F)

Fore Fressure
“artical Stress
Fracture Gradient
Shirmin

SHkAR

"Wide range of possible
stresses. The lower limit was
defined by failure in observed in
wellbore. The upper limit was
defined by the frictional limit of
the rock. Stresses were further
constrained by calibrating to
drilling experiences.

"Stress regime is reverse
faulting.



Predicted Failure and Model Verification
Pilot Well

Breakout Width, degree . . )
0 120 150 180 Breakout Width, dearee Breakout Azimuth and Width.
30 60 90 120 150 180 0 a0 180 270 360
mpmseher Breakout Width P, Ep -
Allowable Breakout Width e 1=
400 — — Caliper
| Karadon 2

i I
A
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Karagon 3

Mjﬂ\ P 9

600

"Predicted
failure
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drilling
experiences
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breakouts very
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Predicted Mud Weight Windows
Pilot Well

Measured Depth (RKB), m

600

800

1000

1200

1400

Mud Weight (RKB), PPG
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I I I
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I
1
1
1
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— Pare Pressure — Cverburden
— Collapse — Least Stress
+ MW

"Maximum of borehole collapse
pressure/pore pressure is the
lower bound of the mud weight
window

"Used vertical stress as upper
bound of mud weight window



Effect of Drilling Direction - Sidetrack

EFFECT OF DRILLING DIRECTION EFFECT OF DRILLING DIRECTION
at WD = 1488 m (TWD = 1476 m) at WD = 1800 m (TW Azimuth: 12
N N Deviation: 67
Azimuth: 10 Value: 10.98
Deviation: 34
Value: 9.35
[
i ~
Wy E W E
L. L
S S
7 g 9 10 11 FPG (RKE) 7 8 g 10 11 12 FFG (RKE]
Contours | |Borehole Collapse j Show Profile| Contours | |Borehole Collapse j Show Profile

"Drilling horizontally in the direction of SHmax requires the least mud
weight for stability.



Premature failure of fractured coal

If not fractured, there is little When fractured, large zones of
risk of instabilities while drilling. instability develop due to premature
Some coals are quite strong. failure of along cleats and fractures



Example of Mud window in
fractured coal

Pl wind o Ml weind o
to prevent breakouts and fracture propagation to prevent breakouts and fracture prapagation

E B s

1400 1600 1800 2000 0 a00 1000 1500
Pressure FPressure
When unfractured, low mud In fractured coal, premature failure of
weights can stabilize the fractures require high mud weights, resulting
wellbore and larger mud in small mud windows and a high risk of

windows result. instability, as well as losses.



Staollity of Opennole Completiorn



Onset of Sand Production

600
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Approach

* Drawdown is modeled using a poroelastic analysis for:

— Two horizontal well orientations (drilled parallel and perpendicular to
SHmax)

— Two stress path scenarios:
* dSH/dP=0, dSv/dP=0 (no stress change with depletion)

* dSH/dP=1; dSv/dP=0 (horizontal stress change is equal to the pore
pressure change)

— Drawdown limit is the BHFP that causes failure to extend more than
10% into the rock away from the well



300

100

Geomechanical Model

Stress [psi]

1000 2000 3000 4000
I 1

0

Effective Stress Ratios
20 40 B0 a0 100

: Shallow
. reverse
i faulting

300

100

00

100

Strike-slip
at depth

Fore Fressure
“erical Stress
Fracture Gradient
Shrnin

SHb
[Shmin-Fp)/(=w-Fp) :
(SHma-Ppl/(Sv-Pp)

__________

___________________________________________

Pp- constrained using mud
weights and pressure buildup
test results

S.... ~ 0.83 psi/ft (below x000

ft) based on a compilation of
LOT and minifrac data.
Higher values are required to
explain observed wellbore
failure features at shallow
depths

Sv- pseudo-density from sonic
log

S,...- below 2000 ft, SFIB
modeling.



psi

Stress

BHFP vs RP — Well Drilled Towards

3000
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Stress, psi

BHFP vs RP — Well Drilled Towards

* dSH/dP=1 "%|

* dSv/dP=0

800 [

BHFP, psi

4001

Stress path for dSH/dP=1 and dSv/dP=0 and friction=0.8
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Stress, psi

BHFP vs RP — Well Drilled Towards

* dSH/dP=0 "]
* dSv/dP=0
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Wells drilled toIVg%ySl—Engi le}(}ltn%ially much stronger

than those drilled towards Shmin

As depletion occurs, the critical safe BHFP depends on the
stress path

For some stress paths, wells can rapidly destabilize after a
period of constant critical safe drawdown

Late in the life of the reservoir, wells drilled towards
Shmin could become nearly as stable than those drilled
towards SHmax



Is it possible to enhance productivity by
activating near-well slip on cleats?

Zone where at least
one plane slips
|l T

Zone where at least
two planes slip

Zone where all
three planes slip

| _ Potential

Likely zone Possible zone of
of t_)lock failure zone enhanced
failure permeability

Cohesion 30 psi. Sliding friction 0.58




Summary

The geomechanical concepts presented here can be used to
design drilling programs (mud weight windows) to
minimize the formation damage, but requires an
understanding of the properties of both intact rocks and
cleated rocks.

Horizontal wells drilled towards SHmax in the foothills of
the Canadian Rockies are more likely to be stable than
those drilled in the direction of Shmin.

Deciding whether or not to do openhole completion
requires knowing the current stress state as well as how the
stresses will change over time.

It may be possible to enhance near-well permeability by
activating slip on cleats (cavity completions) but there is a
risk of causing catastrophic failure.



Safe mud-weight window for horizontal wells in CBM
basins of USA

LV or MV Coals HVA Coals HVB Coals
Min (UCS=490psi) | (UCS=1050psi) | UCS =2050 psi | ( UCS =4800 psi )|
Hor. max
Basin & depth| Stress | mMn MW mexx MW| min MW maxx MW [min MW MW | min MW max MW
(ft) (ppg)  (Ppa) | (PPg)  (PP9) | (Ppg) (Peg) | (PP9)  (PPQ)
A1 (1000) 13.27 0.00 8.80 0.00 10.40 000 1320 000 13.20
A2 (1500) 1269 0.00 7.80 0.00 940 000 1180 000 12.60
B1(1900) 1539 0.00 1280 0.00 1360 000 1520)| 000 15.20
B2 (2100) 15.00 0.00 1220 0.00 13.20 000 1480 000 14.80
C1(2700) 1250 | NO SAFEWINDOW| 0.00 9.00 000 1060) 000 1240
C2 (2900) 1212 | NO SAFE WINDOW| NO SAFEWINDOW] 000 980 000 11.80
D1 (4500) 14.62 | NO SAFEWNDOW] 0.00 12.60 000 1360) 000 1460
D2 (4800) 14.04 | NOSAFEWINDOW| 3.60 12.00 000 1280| O0.00 13.80
E1 (7200) 15.83 9.40 14.40 0.00 14.80 000 1520 000 15.80
E2 (7400) 1553 | 1380 14.00 0.00 14.20 000 1480| 000 15.40
Overburden = 19.23 ppg = 1 psifft
Reservoir Pressure = 8.65 ppg = 0.45 psifft l




Effect of reservoir depletion on WBS--Basin C1, HVA
Coals

Min and Max Pw for Wellbore Stability vs. Reservoir Pressure
Horizontal Coal Well: Basin C1 (UCS= 1050 psi)

—s—maxMW(ppg) —=—minMW {ppg) — PP (ppg) —— Sh(ppg)

16

“t 4 ! L | 1 — 1 | -

(ppg)

0 1 2 3 4 -] 6 7 8 9
Res. Pressure Gradient (ppg)



A practical question:
are smaller-diameter horizontals
more stable than
larger-diameter horizontals?



Are 6" horizontals weaker than 3" horizontals?
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How does this effect wellbore stability during drilling or
production?

* During production, a 6” horizontal is predicted to collapse
earlier than a 3” horizontal

* For example for an HVA coal at 2800 ft, maximum allowable
depletion (before collapse) is reduced by almost a third

* A similar situation is expected to apply for wellbore stability
during drilling...especially when drilling underbalanced

* The strength reduction could be even greater than 11% for
coals, since they are naturally fractured (cleats)



Summary

A 3” well is stronger and therefore more stable than a 6” well,
and less likely to fail or collapse

A 6” well gives negligible improvement in gas rate over a 3”
well when water is being produced

A liner is nearly always recommended in coals

Therefore the best horizontal well is the smallest diameter
well that can accept a liner (note: it will be more difficult to
Install a liner into a smaller diameter well, due to friction
effects)

For wells with undulations, gas rate is larger for the 2000 ft
well than for a 6000 ft well (but less than for a flat well)

Downdip wells produce much less than flat well at low
reservoir pressures



Advantages of Liner in Horizontal

Al All~

* |t appears more wells have been lined than not
* The danger of unlined horizontals is wellbore collapse due to
depletion:

* Orif the wellbore intercepts (1) weak shales (2) unmapped
faults

* Aliner is insurance against the possibility of wellbore collapse
for any reason, and is recommended for most coals (at least
the main laterals)



CASED HOLE COMPLETION

COAL SEAM

7-5/8" CASING




Liner Specs in Horizontals

* Pre-perforated liner used in Arkoma:
— cheaper than slotted

— perfs too large and let too many fines through = plug pumps
and tubulars

e Slotted liners used in Mannville

* But coal fines have very wide PSD, and will plug anything
and everything (including slots)

 Slots in weak sandstones work best in well-sorted sands —
slots should not work well in coalsO

* Best practice: design liners for CBM with 1 mm holes and
3% hole area. 1 mm holes = 2 x slot width



What if Horizontal Well does Collapse during
i ?

~ NOT QUITE
SO BAD




Fine Problems

Endemic in Powder River

Fines are a common problem San Juan, Uinta, and Raton
basins

Horizontals in Arkoma have pump plugging problems late in
life

Affects peak flowrate and decline in San Juan basin

One large CBM operator in the San Juan basin has reported
that coal fines are becoming more of a problem:

— They are building up at the bottom of wells because late-life
flowrates are too low to lift them
— Some liners have been pulled from vertical wells and found to be

plugged.

— Fines production should increase with depletion, and so the
situation can only get worse



Fines Prediction Equation
(borrowed from sanding literature)

« CBHFP=(3S,-S,-U-AP)/(2-A)

A= (1-2v)
1-v)

aa=(1-Kg/Ky

— CBHFP = critical bottomhole flowing pressure
(threshold for coal fines)

— If BHFP lower than CBHFP, expect fines at surface
— S, = max stress acting perpendicular to hole

— S, = minimum stress acting perpendicular to hole

— TWC=a*UCS"b

- U=3.1*TWC

— P = current reservoir pressure



AP Flow in Multilateral
* Fluid Velocity Reduced

 Fine Production Reduced




Underbalanced Multilateral Drilling



LETS DISCUSS HOW IT WORKS

* CONTINUOUS CIRCULATION vs.
JOINTED PIPE

* MULTI-SEAM COMPLETIONS
* MANAGED PRESSURE DRILLING
* GEOSTEERING

* FRACTURE STIMULATING OF
UNDERBALANCED MULTI-LATERAL
WELLS

* SUMPED PUMPING




Gardes Upstock®

Images

Upstock® with carrier string and drill bit Upstock® with carrier string and drill bit
(side view). (profile view).




’i Horizontal Underbalanced Managed
g Pressure Application-First Seam

Surface Casing

Injection annulus

Carrier String With Up stock on bottom

Upper Coal Seam

Intermediate
Casing Steel

and Fiberglass
Return Annulus

Lower Coal Seam




(337> 234-6544 LAFAYETTE, LA
FAX (337> 235-4138

2 7/8” AOH drill string

5 ¥2” Carrier Casing
7 5/8” Casing

Air injection
Air, drill fluid and
cutting returns

Drill fluid

e ’i )’<> Underbalanced Managed Pressure Drilling

Drilling Coal Seam:

Drill Coal seam while injecting air
down the 7 5/8” and 5 %2” annulus
with drill fluid down 2 7/8” drill
string. Both injection mediums and
cuttings will meet at window and
return to surface via the 5 %2” and
2 7/8” annulus.

Injection rates should start out as per
the pre flow model data and adjusted
according to down hole MWD
pressure sensors in order to keep the
well under balanced.



’i ¥ Horizontal Underbalanced Managed

Pressure Application-Second Seam
Advantages: Disadvantages:

* Multi lateral exposure for greater production rates. - -
* Extra cost for carrier string.

*Some vertical production methods can be used. (Due to low build up rates in pilot hole)

Large acreage drainage units with less wells to drill.

*Less management infrastructure cost for production wells.

*Only one location needed. (less environmental impact, better suited for rugged terrain.)

*No air drilling on directional equipment. Air injected in scavenger annulus.

*Pulse, EM MWD/LWD can be used. Also Geo Steering is available for thin zones.

*No extra time spent on open hole sidetracking, trips for Whip stocks and intersection of a cavity.(could add 16-20
additional days for a quad sided multi lateral)

*Allows deeper higher pressured coal beds to be drilled
*CAN RUN and release liners.
*Built in disposal system..

*Over pressured Multi-Seam Live Well Laterals.

Upper Coal Seam

Lower Coal Seam




WHIPSTOCK SEQUENCE

* WHIFSTOCK HAS TO BE SET
ABOYE ZOME FOR RATHCLE 30°-80°

* RETRIEWAEILITY OF WHIPSTOCK NOT GUARAMTEED
SOME HANE TO BE MILLED OUT

+ FRCOCOUCED FLUID MUST CWERCOME
RISE ABOVE COAL SEAM

® NON-PRODUCTIVE TIME

® NON-PRODUCTIVE COST

WHIPSTOCK SEQLUENCER
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Schaffer double ram, annular BOP and

rotating head




Well Head configuration at setting 5 2
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Wood Group Pressure Control

——

SH-1 UBPricion Wellhesd Svatem Ingiallstion Sequence

Sge % Bun 2278 Dall String

Dol Underbabnoed with hydraulic frction control
— Imect Flud down Dinll String

— Imject Fluid down 958" ¥ T Annulus

— Co-mingle remurns up 7" x 2-T/E" Annulus
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13-38" Casing
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Continuous Circulation
Concentric Casing System

* During connections the established standpipe
injection volume used while drilling is added to
the concentric casing injection volume on the
back side, so the ECD remains constant
eliminating the Bottom Hole Pressure surges
associated with drill pipe connections.



Bottom Hele Circulating Pressure
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Figure 1: Bottom Hole Circulating Pressure (BHCP) vs. Gas Injection Rates
Penn Virginia Qil & Gas - NCRHC-1 - Upshur County, West Virginia
HEEL Flow Modeling - Assuming no Influx - 890" TVD Fresh Water Drilling Fluid
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Continuous Circulation Concentric
Casing Drilling Advantages

“* Bottom Hole Pressure remains constant with no
pressure oscillations during connections

** 2 Phase fluid circulation allows for all types of
guidance and logging MWD’s to be run

“* Significant formation damage to the cleat/fracture
system by induced mud loss and polymer/chemical
absorption is eliminated



BOTTOM HOLE PRESSURE FLUCTUATIONS

6,500 — 943psi-
6.000 870psi
e 798psi
o 35001 Minimum underbalanced
Q, drawdown - 2,100 kPa
g 5,000 725psi
2
g 4500 653psi
n, LA
"6 .3
2 _ 5Upsi
E 4,000f
=
O
@ 3500 1- 508psi
| / Drill pipe connectionsj\
' 435psi
3,000 |- ~
P ]
2 500 L 1 { L 1 1 1 i J 1 L 1 1 ‘Zﬁl;ps,u
N0 10.- 20 30 - 40 50 60 70 80 9 100 110 120 130 140

This figure shows the actual bottom hole pressure fluctuations on the Brazil well-1 FR-1-SC. The pressure spikes were during
a connection of a joint of drill pipe while drilling under balanced thru the 2822’ to 2900’ TVD section. The lower pressure
readings were logged during the shut off of air and mud injection primarily due to frictional losses. The high spikes were due
to the start up of the air and mud injection primarily due to fluid acceleration. The formation pressure was established at
638psi at the 2822’-2900’ TVD section. The only time it stayed close to that range was during the drilling process.



Bottom Hole Circulating Pressure (psi)
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Figure 1: Bottom Hole Circulating Pressure (BHCP) vs. Gas and Liquid Injection Rates
Parana Basin Brazil, Well 1 - FR-1-5C, 2,822" to 2900' TVD
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GEOSTEERING

* The Art of Staying in the
Coal



Actual HML Coal Bed Methane Well
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PENN VIRGINA OIL AND GAS
NCRHC-1 MAINBORE
BARBOUR COUNTY, WV
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PENN VIRGINA OIL AND GAS
NCRHC-1 LATERAL 1
BARBOUR COUNTY, WV
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PENN VIRGINA OIL AND GAS
NCRHC-1 LATERAL 1 ST-2
BARBOUR COUNTY, WV

CROSS SECTION PLOT
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PENN VIRGINA OIL AND GAS
NCRHC-1 LATERAL 2
BARBOUR COUNTY, WV

CROSS SECTION PLOT
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FRACTURE STIMULATION

* STIMULATE MULTI-LATERAL PATTERN

— NITROGEN HIGH RATE
— CO, SYSTEM

* STIMULATE VERTICAL WELLS BETWEEN
MULTI-LATERAL PATTERN
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Comparison of Pressure Histories for Rock Fracturing Techniques
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Comparison of Created Fracture Geometries for Rock Fracturing
Techniques




Conceptual Model of Pulse Fracturing Results




CONVENTIONAL HORIZONTAL DRILLING METHODS
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T —— WATER

WATER »

GARDES SYSTEM ALLOWS SUMP AREA BELOW COAL
SEAM AND 0" HYDROSTATIC PRESSURE DUE TO

GRAVITY DERAINAGE.
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WHAT IS THE FUTURE
DEVELOPMENT STATEGY OF
THE MANNVILLE PLAY

Multi-seam / multi-lateral wells

Inert gas fracture stimulated multi-lateral
wells

Under formation pressure drilling with clear
non-damaging fluids

Sumped ESP’s
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